
Statistical physics of a model binary genetic switch with linear feedback

Paolo Visco, Rosalind J. Allen, and Martin R. Evans
SUPA, School of Physics and Astronomy, The University of Edinburgh, James Clerk Maxwell Building,

The King’s Buildings, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom
�Received 19 December 2008; published 30 March 2009�

We study the statistical properties of a simple genetic regulatory network that provides heterogeneity within
a population of cells. This network consists of a binary genetic switch in which stochastic flipping between the
two switch states is mediated by a “flipping” enzyme. Feedback between the switch state and the flipping rate
is provided by a linear feedback mechanism: the flipping enzyme is only produced in the on switch state and
the switching rate depends linearly on the copy number of the enzyme. This work generalizes the model of
Visco et al. �Phys. Rev. Lett. 101, 118104 �2008�� to a broader class of linear feedback systems. We present a
complete analytical solution for the steady-state statistics of the number of enzyme molecules in the on and off
states, for the general case where the enzyme can mediate flipping in either direction. For this general case we
also solve for the flip time distribution, making a connection to first passage and persistence problems in
statistical physics. We show that the statistics are non-Poissonian, leading to a peak in the flip time distribution.
The occurrence of such a peak is analyzed as a function of the parameter space. We present a relation between
the flip time distributions measured for two relevant choices of initial condition. We also introduce a correla-
tion measure and use this to show that this model can exhibit long-lived temporal correlations, thus providing
a primitive form of cellular memory. Motivated by DNA replication as well as by evolutionary mechanisms
involving gene duplication, we study the case of two switches in the same cell. This results in correlations
between the two switches; these can be either positive or negative depending on the parameter regime.
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I. INTRODUCTION

Populations of biological cells frequently show stochastic
switching between alternative phenotypic states. This phe-
nomenon is particularly well studied in bacteria and bacte-
riophages, where it is known as phase variation �1�. Phase
variation often affects cell surface features, and its evolution-
ary advantages are believed to involve evading attack from
host defense systems �e.g., the immune system� and/or “bet-
hedging” against sudden catastrophes which may wipe out a
particular phenotypic type. Switching between different phe-
notypic states is controlled by an underlying genetic regula-
tory network, which randomly flips between alternative pat-
terns of gene expression. Several different types of genetic
network are known to control phase variation—these include
DNA inversion switches, DNA methylation switches, and
slipped strand mispairing mechanisms �1–3�.

In this paper, we study a simple model for a genetic net-
work that allows switching between two alternative states of
gene expression. Its key feature is that it includes a linear
feedback mechanism between the switch state and the flip-
ping rate. When the switch is active, an enzyme is produced
and the rate of switching is linearly proportional to the copy
number of this enzyme. The statistical properties of this
model are made nontrivial by this feedback, leading, among
other things, to non-Poissonian behavior that may be of ad-
vantage to cells in surviving in certain dynamical environ-
ments. Our model is very generic and does not aim to de-
scribe any specific molecular mechanism in detail, but rather
to determine in a general way the consequences of the linear
feedback for the switching statistics. Motivated by the fact
that cells often contain multiple copies of a particular genetic
regulatory element, due to DNA replication or DNA duplica-

tion events during evolution, we also consider the case of
two identical switches in the same cell. We find that the two
copies of the switch are coupled and may exhibit interesting
and potentially important correlations or anticorrelations.
Our model switch is fundamentally different from bistable
gene networks that have been the subject of previous theo-
retical interest. In fact, as we shall show, our switch is not
bistable but is intrinsically unstable in each of its two states.

Before discussing our model in detail, we provide a brief
overview of the basic biology of genetic networks and sum-
marize some previously considered models for genetic
switches. Genetic networks are interacting many-component
systems of genes, RNA, and proteins that control the func-
tions of living cells. Genes are stretches of DNA ��1000
base pairs long in bacteria�, whose sequences encode particu-
lar protein molecules. To produce a protein molecule, the
enzyme complex RNA polymerase copies the gene sequence
into a messenger RNA �mRNA� molecule. This is known as
transcription. The mRNA is then translated �by a ribosome
enzyme complex� into an amino acid chain which folds to
form the functional protein molecule. The production of a
specific set of proteins from their genes ultimately deter-
mines the phenotypic behavior of the cell. Phenotypic behav-
ior can thus be controlled by turning genes on and off. Regu-
lation of transcription �production of mRNA� is one
important way of achieving this. Transcription is controlled
by the binding of proteins known as transcription factors to
specific DNA sequences, known as operators, usually situ-
ated at the beginning of the gene sequence. These transcrip-
tion factors may be activators �which enhance the transcrip-
tion of the gene they regulate� or repressors �which repress
transcription, often by preventing RNA polymerase binding�.
A given gene may encode a transcription factor that regulates
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itself or other genes, leading to complex networks of tran-
scriptional interactions between genes.

There has been much recent interest among both physical
scientists and biologists in deconstructing complex genetic
networks into modular units �4�, and in seeking to under-
stand their statistical properties using theory and simulation
�5,6�. Of particular interest is the fact that genetic networks
are intrinsically stochastic, due to the small numbers of mol-
ecules involved in gene expression �7,8�. This can give rise
to heterogeneity in populations of genetically and environ-
mentally identical cells �7�. For some genetic networks, this
heterogeneity is “all or nothing:” the population splits into
two distinct subpopulations, with different states of gene ex-
pression. Such networks are known as bistable genetic
switches: they have two possible long-time states, corre-
sponding to alternative phenotypic states. Well-known ex-
amples are the switch controlling the transition from the
lysogenic to lytic states in bacteriophage � �9,10�, and the
lactose utilization network of the bacterium Escherichia coli
�11�. Several simple mechanisms for achieving bistability
have been studied, including pairs of mutually repressing
genes �12,13�, positive feedback loops �14�, and mixed feed-
back loops �15�. Such bistable genetic networks can allow
long-lived and binary responses to short-lived signals—for
example, when a cell is triggered by a transient signal to
commit to a particular developmental pathway.

Theoretical treatments of bistable genetic networks usu-
ally consider the dynamics of the copy number �or concen-
tration� of the regulatory proteins involved. This affects the
activation state of the genes, which in turn influences the rate
of protein production. The macroscopic rate equation ap-
proach �16� provides a deterministic �mean-field� description
of the dynamics that ignores fluctuations in protein copy
number or gene expression state. This approach, applied to a
switch with two mutually repressing genes, has shown that
cooperative binding of regulatory proteins is an important
factor in generating bistability �13�. Other studies have
shown, however, that bistability can be achieved even when
the deterministic equations have only one solution, due to
stochasticity and fluctuations in protein numbers �17,18�. An
alternative approach is to study the dynamics of stochastic
flipping between two stable states using stochastic simula-
tions �19–21�, by numerically integrating the master equation
�22�, or by path-integral-type approaches �23�. This dynami-
cal problem bears some resemblance to the Kramers problem
of escape from a free-energy minimum �24,25�. One there-
fore expects on general grounds that the typical time spent in
one of the bistable states should be exponentially large in the
typical number of proteins present in the state. This has been
confirmed, at least for cooperative toggle switches formed of
mutually repressing genes �19,20�. From the perspective of
statistical physics, interesting questions arise concerning the
distribution of escape times and the connection to first pas-
sage properties of stochastic processes.

In this paper, however, we are concerned with an intrin-
sically different situation from these bistable genetic net-
works. The molecular mechanisms controlling microbial
phase variation typically involve a binary element that can be
in either of two states. For example, this may be a short
fragment of DNA that can be inserted into the chromosome

in either of two orientations, a repeated DNA sequence that
can be altered in its number of repeats, or a DNA sequence
that can have two alternative patterns of methylation �1�. The
flipping of this element between its two states is stochastic,
with a flipping rate that is controlled by various regulatory
proteins, the activity of which may be influenced by environ-
mental factors. We shall consider the case where a feedback
exists between the switch state and the flipping rate. This is
particularly interesting from a statistical physics point of
view because it leads to non-Poissonian switching behavior,
as we shall show. Our work has been motivated by several
examples. The fim system in uropathogenic strains of the
bacterium E. coli controls the production of type-1 fimbriae
�or pili�, which are “hairs” on the surface of the bacterium.
Individual cells switch stochastically between “on” and “off”
states of fimbrial production �1,26–28�. The key feature of
the fim switch is a short piece of DNA that can be inserted
into the bacterial DNA in two possible orientations. Because
this piece of DNA contains the operator sequence for the
proteins that make up the fimbriae, in one orientation, the
fimbrial genes are transcribed and fimbriae are produced �the
on state� and in the other orientation, the fimbrial genes are
not active and no fimbriae are produced �the off state�. The
inversion of this DNA element is mediated by recombinase
enzymes. Feedback between the switch state and the switch-
flipping rate arises because the FimE recombinase �which
flips the switch in the on-to-off direction� is produced more
strongly in the on switch state than in the off state. This
phenomenon is known as orientational control �29–31�. The
production of a second type of fimbriae in uropathogenic E.
coli, Pap pili, also phase varies, and is controlled by a DNA
methylation switch �1,2,32�. Here, the operator region for the
genes encoding the Pap pili can be in two states, in which the
DNA is chemically modified �methylated� at different sites,
and different binding sites are occupied by the regulatory
protein Lrp. Switching in this system is facilitated by the
PapI protein, which helps Lrp to bind �33�. Feedback be-
tween the switch state and the flipping rate arises because the
production of PapI itself is activated by the protein PapB,
which is only produced in the on state �1,2,34�.

A common feature of the above examples is the existence
of a feedback mechanism: in the fim system this occurs
through orientational control, and in the pap system, through
activation of the papI gene by PapB. In this paper, we aim to
study the role of such feedback within a simple, generic
model of a binary genetic switch. We shall assume that the
feedback is linear, and we thus term our model a “linear
feedback switch.” In a recent publication �35�, we presented
a simple mathematical model of a DNA inversion genetic
switch with orientational control, which was inspired by the
fim system. Our model reduces to the dynamics of the num-
ber of molecules of a “flipping enzyme” R, which mediates
switch flipping, along with a binary switch state. Enzyme R
is produced only in the on switch state. As the copy number
of R increases, the on-to-off flipping rate of the switch in-
creases and this results in a non-Poissonian flipping process
with a peak in the lifetime of the on state. The model is linear
in the sense that the rate at which the switch is turned off is
a linear function of the number of enzymes R which it pro-
duces. In our previous work �35�, we imagined enzyme R to
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be a DNA recombinase, and the two switch states to corre-
spond to different DNA orientations, in analogy with the fim
system. However, the same model could be used to describe
a range of molecular mechanisms for binary switch flipping
with feedback between the switch state and flipping rate, and
can thus be considered a generic model of a genetic switch
with linear feedback.

In our recent work �35�, we obtained exact analytical ex-
pressions for the steady-state enzyme copy number for our
model switch with linear feedback, in the particular case
where the flipping enzyme switches only in the on-to-off
direction �this being the relevant case for fim�. We also cal-
culated the flip time distribution for this model analytically.
Conceptually, such a calculation is reminiscent of the study
of persistence in statistical physics �36� where, for example,
one asks about the probability that a spin in an Ising system
has not flipped up to some time �37�. For the flip time dis-
tribution, we defined different measurement ensembles ac-
cording to whether one starts the time measurement from a
flip event �the switch change ensemble �SCE�� or from a
randomly selected time �the steady-state ensemble �SSE��. In
the present paper, we extend this work to present the full
solution of the general case of the model and extend our
study of its persistence properties. The presence of a rate for
the enzyme-mediated off-to-on flipping �k3

off� has most sig-
nificant effects on the flip time distributions F�T�, as illus-
trated in Figs. 6 and 7, where we show the parameter range
over which a peak is found in F�T� for zero and nonzero k3

off.
We also prove an important relation between the two mea-
surement ensembles defined in �35� and use it to show that a
peak in the flip time distribution only occurs in the switch
change ensemble and not in the steady-state ensemble. We
find that the non-Poissonian behavior of this model switch
leads to interesting two-time autocorrelation functions. We
also study the case where we have two copies of the switch
in the same cell and find that these two copies may be cor-
related or anticorrelated, depending on the parameters of the
model, with potentially interesting biological implications.

The paper is structured as follows. In Sec. II we define the
model, describe its phenomenology, and show that a “mean-
field” deterministic version of the model has only one
steady-state solution. In Sec. III we present the general solu-
tion for the steady-state statistics, and in Sec. IV we study
first-passage time properties of the switch; technical calcula-
tions are left to Appendixes A and B. In Sec. V we consider
two coupled model switches and we present our conclusions
in Sec. VI.

II. MODEL

We consider a model system with a flipping enzyme R
and a binary switch S, which can be either on or off �de-
noted, respectively, as Son and Soff�. Enzyme R is produced
�at rate k2� only when the switch is in the on state, and is
degraded at a constant rate k1, regardless of the switch state.
This represents protein removal from the cell by dilution on
cell growth and division, as well as specific degradation
pathways. Switch flipping is assumed to be a single-step pro-
cess, which either can be catalyzed by enzyme R, with rate

constants k3
on and k3

off and linear dependence on the number
of molecules of R, or can happen “spontaneously,” with rates
k4

on and k4
off. We imagine that the spontaneous switching pro-

cess may in fact be catalyzed by some other enzyme whose
concentration remains constant and which is therefore not
modeled explicitly here. Our model, which is shown sche-
matically in Fig. 1, is defined by the following set of bio-
chemical reactions:

R→
k1

� , Son→
k2

Son + R , �1a�

Son + R�
k3

off

k3
on

Soff + R, Son�
k4

off

k4
on

Soff. �1b�

A. Phenomenology

We notice that there are two physically relevant and
coupled time scales for our model switch: the time scale
associated with changes in the number of R molecules �dic-
tated by the production and decay rates k1 and k2�, and that
associated with the flipping of the switch �dictated by k3, k4,
and the R concentration�.

We first consider the case where the time scale for R
production/decay is much faster than the switch-flipping time
scale. The top left panel of Fig. 2 shows a typical dynamical
trajectory for parameters in this regime. Here, we plot the
number n of R molecules, together with the switch state,
against time. This result was obtained by stochastic simula-
tion of reaction set �1� using the Gillespie algorithm �38,39�.
This algorithm generates a continuous-time Markov process
which is exactly described by master equation �10�. For a
given switch state, the number n of molecules of R varies
according to reactions �1a�. When the switch is in the on
state, n grows toward a plateau value, and when the switch is
in the off state, n decreases exponentially toward n=0. The
time evolution of n can thus be seen as a sequence of relax-
ations toward two different asymptotic steady states, which
depend on the switch position. To better understand this lim-
iting case, we can make the assumption that the number of R
molecules evolves deterministically for a given switch state.
We can then write down deterministic rate equations corre-
sponding to reaction scheme �1�. These equations are first-
order differential equations for �, the mean concentration of
the enzyme. When the switch is on, the rate equation reads

Switch off

No production of R

“spontaneous”
switching

R–dependent
switching

Switch on

production of R

FIG. 1. �Color online� A schematic illustration of the model
DNA inversion switch.
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d�

dt
= − k1� + k2, �2�

with solution

��t� = ��0�e−k1t +
k2

k1
�1 − e−k1t� . �3�

Thus the plateau density in the on state is given by the ratio

�on = k2/k1, �4�

and the time scale for relaxation to this density is given by
k1, the rate of degradation of R1. When the switch is in the
off state, the rate equation for � reads instead

d�

dt
= − k1� , �5�

and one simply has exponential decay to �=0 with decay
time k1. In this parameter regime, switch flipping typically
happens when the number of molecules of R has already
reached the steady state �as in the top left panel of Fig. 2�.
Thus, the on-to-off switching time scale is given by
1 / ��onk3

on+k4
on�, where �on is the plateau concentration of

flipping enzyme when the switch is in the on state, given by
Eq. �4�. Since the corresponding plateau concentration in the
off switch state is zero, the off-to-on switch-flipping time
scale is simply given by 1 /k4

off.
We now consider the opposite scenario, in which switch-

ing occurs on a much shorter time scale than relaxation of
the enzyme copy number. A typical trajectory for this case is
shown in the bottom left panel of Fig. 2. Here, switching
reactions dominate the dynamics of the model, and the dy-
namics of the enzyme copy number follows a standard birth-
death process, with an effective birth rate given by the en-
zyme production rate in the on state multiplied by the
fraction of time spent in the on state. A more quantitative
account for these behaviors is provided later on, in Sec.
III B.

For parameter values between these two extremes, where
the time scales for switch flipping and enzyme number re-
laxation are similar, it is more difficult to provide intuitive
insights into the behavior of the model. A typical trajectory
for this case is given in the middle left panel of Fig. 2. Here,
we have set the on-to-off and off-to-on switching rates to be
identical: k3

on=k3
off and k4

on=k4
off. We notice that typically, less

time is spent in the on state than in the off state. As soon as
the switch flips into the on state, the number of R molecules
starts increasing and the on-to-off flip rate begins to increase.
Consequently, the number of R molecules rarely reaches its
plateau value before the switch flips back into the off state.

To illustrate the effects of including the parameter k3
off, we

also show trajectories for different values of the ratio r
=k3

off /k3
on in Fig. 3, for fixed k3

on. For small r, the amount of
enzyme decays to zero in the off state before the next off-
to-on flipping event, resulting in bursts of enzyme produc-
tion. In contrast, when r is O�1�, flipping is rapid in both
directions so that p�n� is peaked at intermediate n.

B. Mean-field equations

To explore how the switching behavior of our model
arises, we can write down mean-field deterministic rate equa-
tions corresponding to the full reaction scheme �1�. These
equations describe the time evolution of the mean concentra-
tion ��t� of R molecules and the probabilities Qon�t� and
Qoff�t� of the switch being in the on and off states. These
equations implicitly assume that the mean enzyme concen-
tration � is completely decoupled from the state of the
switch. Thus correlations between the concentration � and
the switch state are ignored and the equations furnish a
mean-field approximation for the switch. As we now show,
this crude type of mean-field description is insufficient to
describe the stochastic dynamics of the switch, except in the
limit of high flipping rate. Noting that Qon�t�+Qoff�t�=1, the
mean-field equations read

FIG. 2. �Color online� Left: typical trajectories of the system when k3
on=k3

off=k3 is increased �from top to bottom k3=0.0001, 0.01, and
1�. The other parameters are k1=1, k2=100, and k4

on=k4
off=k4=0.1. Gray shading denotes periods in which the switch is in the on state, and

the solid lines denote the number of enzyme molecules, plotted against time. In the bottom panel, the switch flips so fast that the gray shading
is only shown in the inset where the trajectory from k1t= �60,61� is shown in detail. Right: probability distribution functions for the number
n of R molecules, for parameter values corresponding to the trajectories shown in the left panels. The symbols are the results of numerical
simulations �see text for details�. The full curves plot analytical results �26� and �36�, which are in perfect agreement with the simulations.
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d��t�
dt

= k2Qon�t� − k1��t� , �6a�

dQon�t�
dt

= �k4
off + ��t�k3

off��1 − Qon�t�� − �k4
on + ��t�k3

on�Qon�t� .

�6b�

The above equations have two sets of possible solutions for
the steady-state values of � and Qon, but only one has a
positive value of �, and is therefore physically meaningful.
The result is

� =
�onk3

off − �k4
off + k4

on� + ��

2�k3
off + k3

on�
, �7�

where

� = ��onk3
off − �k4

off + k4
on��2 + 4�onk4

off�k3
off + k3

on� , �8�

and

Qon = �/�on. �9�

The most interesting conclusion to be drawn from this mean-
field analysis is that there is only one physically meaningful
solution. In this solution, the enzyme concentration � is less
than the plateau value in the on state ��on of Eq. �4��. Thus
reaction scheme �1� does not have an underlying bistability.
The two states of our stochastic switch evident in Figs. 2 and
4 for low values of k3 and k4 are not bistable states but are
rather intrinsically unstable and transient states, each of
which will inevitably give rise to the other after a certain
�stochastically determined� period of time. In this sense, our
model is fundamentally different from the bistable reaction
networks which have previously been discussed �13,19,40�.
On the other hand, in the limit of rapid switch flipping,
where k3 or k4 is large, the mean-field description holds and
the protein number distribution does show a single peak
whose position is well approximated by Eq. �7�, as shown in
Figs. 2 and 4 for the case k3=1.

FIG. 3. �Color online� Left: Typical trajectories of the system when r=k3
off /k3

on is increased �from top to bottom r=0, 0.5, and 1�. The
other parameters are k1=1, k2=100, k3

on=1, and k4
on=k4

off=k4=0.1. Gray shading denotes periods in which the switch is in the on state, and
the solid lines denote the number of enzyme molecules, plotted against time. In the bottom panel, the switch flips so fast that the gray shading
is only shown in the inset where the trajectory from k1t= �60,61� is shown in detail. Right: probability distribution functions for the number
n of R molecules, for parameter values corresponding to the trajectories shown in the left panels. The symbols are the results of numerical
simulations �see text for details�. The full curves plot analytical results �26� and �36�, which are in perfect agreement with the simulations.

FIG. 4. �Color online� Left: typical trajectories of the system when k4
on=k4

off=k4 is increased �from top to bottom k4=0.1, 1, and 100�.
Other parameters are k1=1, k2=100, and k3

on=k3
off=k3=0.001. In each panel the gray shading denotes that the switch is on and the line plots

the number of enzymes against time. In the third panel the gray shading is only shown in the inset where the trajectory from k1t
= �60,61� is detailed. Right: probability distribution functions of the number of R molecules in the cell for parameter values corresponding
to the trajectories shown in the left panels. The symbols are the results of numerical simulations �see text for details�. The full curves plot
analytical results �26� and �36� and pass perfectly through the simulation points.
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III. STEADY-STATE STATISTICS

A. Analytical solution

Returning to the fully stochastic version of reaction
scheme �1�, we now present an exact solution for the steady-
state statistics of this model. A solution for the case where
k3

off=0 was sketched in Ref. �35�. Here we present a com-
plete solution for the general case where k3

off�0, and we
discuss the properties of the steady-state as a function of all
the parameters of the system.

We first define the probability ps�n , t� that the system has
exactly n enzyme molecules at time t and the switch is in the
s state �where s= �on,off��. The time evolution of ps is de-
scribed by the following master equation:

dps�n�
dt

= �n + 1�k1ps�n + 1� + k2
s ps�n − 1� + nk3

1−sp1−s�n�

+ k4
1−sp1−s�n� − �nk1 + k2

s + nk3
s + k4

s�ps�n� , �10�

where we use the shorthand notations �off,on�	�0,1�, k2
off

	0, and k2
on	k2. In the steady state, the time derivative in

Eq. �10� vanishes, and the problem reduces to a pair of
coupled equations for pon and poff:

�n + 1�k1pon�n + 1� + k2pon�n − 1� + nk3
offpoff�n� + k4

offpoff�n�

= �nk1 + k2 + nk3
on + k4

on�pon�n� , �11a�

�n + 1�k1poff�n + 1� + nk3
onpon�n,t� + k4

onpon�n,t�

= �nk1 + nk3
off + k4

off�poff�n,t� . �11b�

To solve the above equations we use the generating functions

Gs�z� = 

n=0

�

ps�n�zn. �12�

The steady-state equations �11� can be now written as a set of
linear coupled differential equations for Gs:

L1Gon�z� = L2Goff�z� , �13a�

L3Goff�z� = L4Gon�z� , �13b�

where Li are linear differential operators

L1�z� = k1�z − 1��z − k2�z − 1� + k3
onz�z + k4

on, �14a�

L2�z� = k3
offz�z + k4

off, �14b�

L3�z� = k1�z − 1��z + k3
offz�z + k4

off, �14c�

L4�z� = k3
onz�z + k4

on. �14d�

In order to solve the two coupled Eqs. �13a� and �13b� it is
first useful to take their difference. After simplification this
yields the relation

�zGoff�z� = − �zGon�z� +
k2

k1
Gon�z� . �15�

Next, we take the first derivative of Eq. �13b� and then re-
place the derivatives of Goff with relation �15�. After some

algebra, one finds that Gon verifies the second-order differen-
tial equation

k1��z − k1�Gon� �z� + �k1� − �z�Gon� �z� − 	Gon�z� = 0,

�16�

where the Greek letters are combinations of the parameters
of the model:

� = k1 + k3
on + k3

off, �17a�

� = k1 + k2 + k3
off + k3

on + k4
off + k4

on, �17b�

� = k2�k1 + k3
off� , �17c�

	 = k2�k1 + k3
off + k4

off� . �17d�

We now define the variable

u�z� 	 uz =
�

k1�
z −

�

�2 = u0 + z�u1 − u0� , �18�

and the parameter combinations


 = u0 +
�

�
, � =

	

�
. �19�

We can now write Gon�z� �and Goff�z�� in terms of the vari-
able u �Eq. �18�� by defining the functions

Js�u� = Gs�z� . �20�

Differential equation �16� then reads

uJon� �u� + �
 − u�Jon� �u� − �Jon�u� = 0. �21�

Looking for a regular power-series solution of the form

Jon�u� = 

n=0

�

anun, �22�

one obtains the following solution:

Jon�u� = a0 1F1��,
,u� , �23�

where 1F1 denotes the confluent hypergeometric function of
the first kind,

1F1��,
,u� 	 

n=0

�
���n

�
�n

un

n!
�24�

and ���n=���+1�¯ ��+n−1� denotes the Pochhammer
symbol.

The constant a0 will be determined using the boundary
conditions, which we discuss later. We first note that the
above result for Jon�u� can be translated into Gon�z� by re-
placing u with the expression of u�z� in Eq. �22� and expand-
ing in powers of z:
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Gon�z� = 

n=0

�

an�u0 + z�u1 − u0��n

= 

n=0

�

an

m=0

n

u0
m�z�u1 − u0��n−m� n

m
�

= 

n=0

�

zn

m=n

�

amu0
m−n��u1 − u0��n�m

n
� , �25�

where we have relabeled the indices n−m→n and n→m in
the last equality of Eq. �25�. We can identify pon�n� from Eq.
�12� as the coefficient of zn in the above expression:

pon�n� = 

m=n

�

amu0
m−n�u1 − u0�n�m

n
� . �26�

From Eqs. �22� and �23� we read off

an =
a0

n!

���n

�
�n
. �27�

Substituting Eq. �27� into Eq. �26� we deduce, using the
definition of the hypergeometric function �24� and noting
���n+m= ���n��+n�m, that

pon�n� = a0
�u1 − u0�n

n!

���n

�
�n
1F1�� + n,
 + n,u0� . �28�

In deriving this expression we have, in fact, established the
following identity, which will prove useful again later:

1F1��,
,u� = 

n=0

�
zn�u1 − u0�n

n!

���n

�
�n
1F1�� + n,
 + n,u0� .

�29�

To compute Goff�z�, we integrate Eq. �15�, which yields,
using the form of Jon�u� �Eq. �23��

Goff�z� + Gon�z� − a0
k2�
 − 1�

k1�� − 1��u1 − u0� 1F1�� − 1,
 − 1,uz�

= � , �30�

where � is our second integration constant. We then have
two constants, a0 and �, which still need to be determined.
The constant � can be found using the normalization condi-
tion 
n�pon�n�+ poff�n��=1, which is equivalent to Gon�1�
+Goff�1�=1. Using this condition, we obtain

� = 1 − a0
k2�
 − 1�

k1�� − 1��u1 − u0� 1F1�� − 1,
 − 1,u1� . �31�

In order to compute the remaining constant a0, we consider
the boundary condition at z=0. From definition �12� of the
generating function we see that Gs�z=0�= ps�n=0�. Our
boundary condition thus reads

Jon�u0� + Joff�u0� = pon�0� + poff�0� . �32�

Setting n=0 in master equation �11a� �noting that the term in
pon�n−1� vanishes� gives poff�0� in terms of pon�0� and
pon�1�:

poff�0� =
k2 + k4

on

k4
off pon�0� −

k1

k4
off pon�1� . �33�

Combining Eq. �30� �with z=0� and Eq. �31�, substituting
into Eq. �32�, using Eq. �33� to eliminate poff�0�, and finally
substituting in expressions for pon�0� and pon�1� from Eq.
�26�, we determine a0:

a0
−1 = �1 +

k2 + k4
on

k4
off �1F1��,
,u0� −

k1��u1 − u0�
k4

off


1F1�� + 1,
 + 1,u0� −
k2�
 − 1�

k1�� − 1��u1 − u0�

�1F1�� − 1,
 − 1,u0� − 1F1�� − 1,
 − 1,u1�� .

�34�

The final step in obtaining our exact solution is to provide an
explicit expression for poff�n�. From Eq. �30� we have

Goff�z� = � − Gon�z� + a0
k2�
 − 1�

k1�� − 1��u1 − u0�

1F1�� − 1,
 − 1,uz� , �35�

and using identity �29� we obtain

poff�n� = �	n,0 +
a0

n!
 k2

k1
�u1 − u0�n−1 ���n−1

�
�n−1

1F1�� + n − 1,
 + n − 1,u0�

− �u1 − u0�n ���n

�
�n
1F1�� + n,
 + n,u0�� , �36�

where 	i,j is the Kronecker delta.
Our exact analytical solution �26�, �34�, and �36� is veri-

fied by comparison to computer simulation results in the
right panels of Figs. 2 and 4. Here, we plot the probability
distribution function for the total number of enzyme mol-
ecules:

p�n� = pon�n� + poff�n� . �37�

Computer simulations of reaction set �1� were carried out
using Gillespie’s stochastic simulation algorithm �38,39�.
Perfect agreement is obtained between the numerical and
analytical solutions, as shown in Figs. 2 and 4.

B. Properties of the steady state

Having derived the steady-state solution for p�n�, we now
analyze its properties as a function of the parameters of the
model. We choose to fix our units of time by setting k1, the
decay rate of enzyme R, to be equal to unity �so our time
units are k1

−1�. With these units, the plateau value for the
number of enzyme molecules in the on switch state is given
by �on=k2. In this section, we will only analyze the case
where �on=100. To further simplify our analysis, we set k3

on

=k3
off=k3 and k4

on=k4
off=k4 �a discussion of the case where

k3
off=0 and k3

on�0 is provided in Ref. �35��. We then analyze
the probability distribution p�n� as a function of the
R-dependent switching rate k3 and the R-independent switch-
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ing rate k4. The results are shown in the right-hand panels of
Figs. 2 and 4. We consider the three regimes discussed in
Sec. II A: that in which enzyme number fluctuations are
much faster than switch flipping, that where the opposite is
true, and finally the regime where the two time scales are
similar.

In the regime where switch flipping is much slower than
enzyme production/decay �k1� �k4

on+k2k3
on /k1��, the prob-

ability distribution p�n� is bimodal. This is easily under-
standable in the context of the typical trajectories shown in
the left top panels in Figs. 2 and 4: in this regime, the num-
ber of molecules of R always reaches its steady-state value
before the next switch flip occurs. It follows then that pon�n�
is a bell-shaped distribution peaked around k2 /k1, while
poff�n� is highly peaked around zero, so that the total distri-
bution p�n�= pon�n�+ poff�n� is bimodal.

In contrast, when switching occurs much faster than en-
zyme number fluctuations, the probability distribution p�n� is
unimodal and bell shaped, as might be expected from the
trajectories in the bottom left panels of Figs. 2 and 4. As
discussed in Sec. II A, in this regime the number of R mol-
ecules behaves as a standard birth-death process with effec-
tive birth rate given by k2 multiplied by the average time the
switch spends in the on state, and death rate k1. For such a
birth-death process the steady-state probability p�n� is a
Poisson distribution with mean given by the ratio of the birth
rate to the death rate. To show that our analytical result re-
duces to this Poisson distribution, we consider the case
where enzyme-mediated switching dominates �as in Fig. 2�,
so that both k3

off and k3
on are much greater than k1. The

fraction of time spent in the on state is k3
off / �k3

on+k3
off�; thus

the effective birth rate is k2k3
off / �k3

on+k3
off�. In the limit

k3
on→� and k3

off→� with r=k3
off /k3

on constant, one finds that
�→1, 
→1, and uz→k2rz / �k1�1+r��. Using the fact that

1F1�1,1 ,x�=ex, Eq. �23� gives, in this limit,

Gon�z� = a0 exp� k2rz

k1�1 + r�� , �38�

which is the generating function of a Poisson distribution
with mean k2k3

off / �k1�k3
on+k3

off��. Plugging this result into Eq.
�30� and taking again the limit k3→� �and using

1F1�0,0 ,x�=1� finally yields the result that p�n�= pon�n�
+ poff�n� is indeed a Poisson distribution. The same approach
can be taken for the case of Fig. 4, where k3 is constant, and
k4

on and k4
off become very large. The probability distribution

p�n� then becomes a Poisson distribution with mean
k2k4

off / �k1�k4
on+k4

off��. The above result is only valid when
r�0. In fact, as shown in Fig. 3, when r=0 the distribution
of R is peaked at 0 and does not have a Poisson-type shape.

Finally, when there is no clear separation of time scales
between enzyme number fluctuations and switch flipping, the
distribution function for the number of enzyme molecules
has a highly nontrivial shape, as shown in Figs. 2 and 4.

IV. FIRST-PASSAGE TIME DISTRIBUTION

We now calculate the first-passage time distribution for
our model switch. We define this to be the distribution func-

tion for the amount of time that the switch spends in the on
or off state before switching. This distribution is biologically
relevant, since it may be advantageous for a cell to spend
enough time in the on state to synthesize and assemble the
components of the “on” phenotype �for example, fimbriae�,
but not long enough to activate the host immune system,
which recognizes these components. The calculation for the
case k3

off=0 was sketched in �35�. Here we provide a detailed
calculation of the flip time distribution in the more general
case k3

off�0. We find that this dramatically reduces the pa-
rameter range over which the flip time distribution has a
peak. We demonstrate an important relation between the flip
time distributions for the two relevant choices of initial con-
ditions �switch change ensemble and steady-state ensemble�.
The first-passage time distribution is important and interest-
ing from a statistical physics point of view as it is related to
“persistence.” Generally, persistence is expressed as the
probability that the local value of a fluctuating field does not
change sign up to time t �36�. For the particular case of an
Ising model, persistence is the probability that a given spin
does not flip up to time t. In our model, the switch state S
plays the role of the Ising spin. For other problems, there has
been much interest in the long-time behavior of the persis-
tence probability, which can often exhibit a power-law tail.
In our case, however, we expect an exponential tail for the
distribution of time spent in the on state, because linear feed-
back will cause the switch to flip back to the off state after
some characteristic time. We are therefore interested not only
in the tail of the first-passage time distribution, but also in its
shape over the whole time range.

A. Analytical results

We consider the probability Fs�T �n0�dT that if we begin
monitoring the switch at time t0 when there are n0 molecules
of the flipping enzyme R, it remains from time t0→ t0+T in
state s, and subsequently flips in the time interval t0+T
→ t0+T+dT. This probability is averaged over a given en-
semble of initial conditions, determined by the experimental
protocol for monitoring the switch. Mathematically, the ini-
tial condition n0 for switch state s is selected according to
some probability Ws�n0� and we define

Fs�T� = 

n0

Fs�T�n0�Ws�n0� �39�

as the flip time distribution for the ensemble of initial con-
ditions given by Ws�n0�.

The most obvious protocol would be to measure the in-
terval T from the moment of switch flipping, so that the
times t0 correspond to switch flips and the T are the durations
of the on or off switch states. We call this the switch change
ensemble �SCE�. In this ensemble, the probability Ws

SCE of
having n molecules of R at the time t0 when the switch flips
into the s state is

Ws
SCE�n� =

p1−s�n��nk3
1−s + k4

1−s�



n

p1−s�n��nk3
1−s + k4

1−s�
, �40�
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where for notational simplicity, s= �1,0� represents �on,off�.
The numerator of the right-hand side of Eq. �40� gives the
steady-state probability that there are n molecules present in
state 1−s, multiplied by the flip rate into state s. The de-
nominator normalizes Ws

SCE�n�.
We also consider a second choice of initial condition,

which we denote the steady-state ensemble �SSE�. Here, the
initial time t0 is chosen at random for a cell that is in the s
state. This choice is motivated by practical considerations:
experimentally, it is much easier to pick a cell which is in the
s state and to measure the time until it flips out of the s state,
than to measure the entire length of time a single cell spends
in the s state. The probability Ws

SSE of having n molecules of
R at time t0 is then the �normalized� steady-state distribution
for the s state:

Ws
SSE =

ps�n�



n

ps�n�
. �41�

To compute the distribution F�T�, we first consider the
survival probability hs

W�n , t� that, given that at time t=0
�chosen according to ensemble W� the switch was in state s,
at time t it is still in state s and has n molecules of enzyme R.
As the ensemble W only enters through the initial condition,
we may drop the superscript W in what follows. The evolu-
tion equation for hs is the same as for ps�n , t�, but without the
terms denoting switch flipping into the s state. This removes
the coupling between pon and poff that was present in evolu-
tion equations �11�:

�

�t
hon�n,t� = �n + 1�k1hon�n + 1,t� + k2hon�n − 1,t�

− �nk1 + k2 + nk3
on + k4

on�hon�n,t� , �42a�

�

�t
hoff�n,t� = �n + 1�k1hoff�n + 1,t�

− �nk1 + nk3
off + k4

off�hoff�n,t� . �42b�

Introducing the generating function

h̃s�z,t� = 

n=0

�

znhs�n,t� , �43�

the above equations reduce to

�

�t
h̃on�z,t� = �k1 − �k1 + k3

on�z��zh̃on�z,t�

+ �k2z − �k2 + k4
on��h̃on�z,t� , �44a�

�

�t
h̃off�z,t� = �k1 − �k1 + k3

off�z��zh̃off�z,t� − k4
offh̃off�z,t� .

�44b�

We can relate h to F by noting that 
nhs�n , t�= h̃s�1, t� is
the total probability that the switch has not flipped up to time
t. Hence,

Fs�t� = − �th̃s�1,t� . �45�

Equations �44� can be solved using the method of character-
istics �41�. The result, detailed in Appendix A, is

h̃on�z,t� = e−�ontek2�on�z−k1�on��1−e−t/�on�

 W̃�k1�on + e−t/�on�z − k1�on�� , �46�

where �on= �k1+k3
on�−1 and �on=k4

on+k2�1−k1�on�. The func-

tion W̃ is the generating function for the distribution of en-
zyme numbers W�n� at the starting time for the measure-
ment:

W̃�z� = 

n

W�n�zn, �47�

where W refers to WSCE or WSSE. The function h̃off�z , t� can
be obtained in an analogous way: this produces the same

expression as for h̃on, but with k2 set to zero and with all “on”
superscripts replaced by “off:”

h̃off�z,t� = e−k4
offtW̃�k1�off + e−t/�off�z − k1�off�� , �48�

where �off= �k1+k3
off�−1. We can then obtain the distributions

Fon�T� and Foff�T� by differentiating the above expressions,
according to Eq. �45�:

Fon�T� = exp− ��on +
1

�on
�T + k2�on�1 − e−T/�on��

 ���one
T/�on + k2�k1�on − 1��

W̃�k1�on + e−T/�on�1 − k1�on�� + � 1

�on
− k1�

W̃��k1�on + e−T/�on�1 − k1�on��� , �49�

Foff�T� = exp− �k4
off +

1

�off
�T�

 �k4
offeT/�offW̃�k1�off + e−T/�off�1 − k1�off��

+ � 1

�off
− k1�W̃��k1�off + e−T/�off�1 − k1�off��� .

�50�

In the above expressions, the function W̃s is given for the
SSE by

W̃s
SSE = Gs�z�/Gs�1� , �51�
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and for the SCE by

W̃s
SCE�z� =

k3
1−szG1−s� �z� + k4

1−sG1−s�z�
k3

1−sG1−s� �1� + k4
1−sG1−s�1�

. �52�

B. Relation between SSE and SCE

We now show that a useful and simple relation can be
derived between FSSE�T� and FSCE�T�. Let us imagine that
we pick a random time t, chosen uniformly from the total
time that the system spends in state s. The time t will fall into
an interval of duration T, as illustrated in Fig. 5. We can then
split the interval T into the time T1 before t and the time T2
after t, such that T1+T2=T.

We first note that the probability that our randomly chosen
time t falls into an interval of length T is

Prob�T�dT =
TFs

SCE�T�dT

�
0

�

T�Fs
SCE�T��dT�

. �53�

Equation �53� expresses the fact that the probability distribu-
tion for a randomly chosen flip time T is Fs

SCE�T�dT, but the
probability that our random time t falls into a given segment
is proportional to the length of that segment. Since the time T
is chosen uniformly, the probability distribution for T2, for a
given T, will also be uniform �but must be less than T�:

Prob�T2�T�dT =
��T − T2�

T
dT . �54�

One can now obtain Fs
SSE from Prob�T2 �T� by integrating Eq.

�54� over all possible values of T, weighted by relation �53�.
This leads to the following relation between FSCE and FSSE:

Fs
SSE�T2� =

�
T2

�

Fs
SCE�T��dT�

�
0

�

T�Fs
SCE�T��dT�

. �55�

Taking the derivative with respect to T2 this can be recast as

dFs
SSE�T�
dT

= −
Fs

SCE�T�
�T�SCE

, �56�

where �T�SCE is simply the mean duration of a period in the
on state. We have verified numerically that expressions �49�
and �50� for Fs

SSE�T� and Fs
SCE�T� derived above do indeed

obey relation �56�. This relation can also be understood in
terms of backward evolution equations as we discuss in Ap-
pendix B.

C. Presence of a peak in F(T)

We now focus on the shape of the flip time distribution
F�T�: in particular, whether it has a peak. A peak in Fon

SCE�T�
could be biologically advantageous for two complementary
reasons. First, after the switch enters the on state there may
be some start-up period before the phenotypic characteristics
of the on state are established, so it would be wasteful for
flipping to occur before the on state of the switch has become
effective. Second, the on state of the switch may elicit a
negative environmental response, such as activation of the
host immune system, so that it might be advantageous to
avoid spending too long a time in the on state. For example,
in the case of the fim switch, a certain amount of time and
energy is required to synthesize fimbriae, and this effort will
be wasted if the switch flips back into the off state before
fimbrial synthesis is complete. On the other hand, too large a
population of fimbriated cells would trigger an immune re-
sponse from the host. The length of time each cell is in the
fimbriated state therefore needs to be tightly controlled. We
note that for bistable genetic switches and many other rare
event processes, waiting time distributions are exponential
�on a suitably coarse-grained time scale�. This arises from
the fact that the alternative stable states are time invariant in
such systems. The presence of a peak in Fon

SCE�T� for our
model switch indicates fundamentally different behavior,
which occurs because the two switch states in our model are
time dependent.

The presence of a peak in the distribution F�T� requires
the slope of F�T� at the origin to be positive. Applying this
condition to the function Fon �Eq. �49��, we get

�k2k3
on − �k4

on�2�W̃�1� − k3
on�k1 + k3

on + 2k4
on�W̃��1�

− �k3
on�2W̃��1� � 0. �57�

Equation �47� allows us to expressing the derivatives of W̃�1�
as functions of the moments of n, so that we finally get our
condition as a relation between the mean and the variance of
the initial ensemble:

k2k3
on − �k4

on�2 − k3
on�k1 + 2k4

on��n�Won
− �k3

on�2�n2�Won
� 0,

�58�

where �¯�Won
denotes an average taken using the weight Won

of Eq. �40� and �41�. Analogous conditions can be found for
a peak in the off-to-on waiting time distribution. The mo-
ments involved in the above inequality can be computed us-
ing the exact results of Sec. III B. The left-hand side of Eq.
�58� can then be computed numerically for different values
of the parameters, to determine whether or not a peak is
present in F�T�.

For the SSE, there is never a peak in the flip time distri-
bution. This follows directly from relation �56� between the
SSE and SCE, which shows that the slope of Fs

SSE�T� at the
origin is always negative:

time

switch position

on

off

t

T

T1 T2

FIG. 5. Schematic illustration of a possible time trajectory for
the switch. t is a random time falling in an interval of total length T
and splitting it into two other intervals denoted T1 and T2, as dis-
cussed in Sec. IV B.
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�dFs
SSE�T�
dT

�
T=0

= −
Fs

SCE�0�
�T�SCE

� 0. �59�

Thus a peak in the waiting time distribution cannot occur
when the initial condition is sampled in the steady-state en-
semble.

For the SCE, we tested inequality �58� numerically and
found that a peak in the distribution F�T� is possible for the
time spent in the on state �Fon

SCE�, but not for the off-to-on
waiting time distribution �Foff

SCE�. This is as expected and can
be explained by noting that to produce a peak in Fs

SCE�T�, the
flipping rate must increase with time in state s. In the on state
the flipping rate typically does increase with time as the en-
zyme R is produced, while in the off state the flipping rate
decreases in time as R decays.

We now discuss the general conditions for the occurrence
of a peak in Fon

SCE. We first recall from Sec. III B that in the
regime where the copy number of the enzyme R relaxes
much faster than the switch flips �k1�k4

on+k2k3
on /k1�, the pla-

teau level of R is reached rapidly after entering the on state,
so that the flipping rate out of the on state is essentially
constant. This leads to effectively exponentially distributed
flip times from the on state, so that no peak is expected. In
the opposite regime, where switch flipping is much faster
than R number relaxation �k3�0�, we again expect Poisso-
nian statistics and therefore exponentially distributed flip
times. Thus it will be in the intermediate range of k3 that a
peak in the flip time distribution may occur. The exact con-
dition for this �Eq. �58�� is not particularly transparent as the
dependence on the parameters is implicit in the values of the
�n�Won

and �n2�Won
. In particular, the effects of the parameters

k3 and k2 are coupled, since the effective R-mediated switch-
ing rate depends on the copy number of R. However we can
make a broadbrush description of what is required. First the
switch should enter the on state with typical values of n
��on so that there is an initial rise in the value of n and
therefore the flipping rate. Second, we expect that the flip-
ping should be predominantly effected by the enzyme R
rather than spontaneously flipping, i.e., k3 should govern the
flipping rather than k4.

Figure 6 shows the region in the k3-k4 plane where Fon
SCE

has a peak, for the case where k3
on=k3

off=k3 and k4
on=k4

off=k4.
These results are obtained numerically, using inequality �58�.
The distribution Fon

SCE is peaked for parameter values inside
the shaded region. The insets show examples of the distribu-
tions Fon

SCE�T� and Fon
SSE�T� for various parameter values. At

the boundary in parameter space between peaked and mono-
tonic distributions �solid line in Fig. 6�, Fon

SCE�T� has zero
gradient at T=0 �inset �b��. The dashed line in Fig. 6 shows
the position of the boundary for a larger value of the enzyme
production rate k2. As k2 increases, the range of values of k3
for which there is a peak decreases. Increasing k2 increases
the number of enzyme present, which will increase both the
off-to-on and on-to-off switching frequencies, since here
k3

on=k3
off=k3. Thus it appears that approximately the same

qualitative behavior can be obtained for smaller values of k3
when k2 is increased.

In our previous paper �35�, we analyzed the case where
k3

off=0: i.e., the flipping enzyme R switches only in the on-

to-off direction. This case applies to the fim system. Figure 7
shows the analogous plot, as a function of k3

on and k4, when
k3

off=0. The region of parameter space where a peak occurs
in Fon

SCE�T� is much wider than for nonzero k3
off. In this case

an increase in k2 produces a larger range of parameter values
k3

on for which there is a peak �dotted line in Fig. 7�. Here, the
off-to-on switching process is R independent, and is medi-
ated by k4 only �since k3

off=0�. The typical initial amount of
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FIG. 6. �Color online� Occurrence of a peak in the waiting time
distribution sampled in the switch change ensemble. The shaded
area delimits the region where there is a peak �here the parameters
are k1=1, k2=10, and k3

off=k3
on=k3 and k4

off=k4
on=k4�. The dashed

line delimits the same region for k2=100. The insets show an in-
stance of the distribution both in the SCE �red solid line� and in the
SSE �blue dashed line�: �a� there is a peak �k2=10, k3=0.1, k4

=0.1�; �b� on the transition line, where the slope at the origin van-
ishes �k2=10, k3=0.15, k4=0.209 384¯�; and �c� there is no peak
�k2=10, k3=0.2, k4=0.35�.
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R present on entering the on state is thus not much affected
by k2, although the plateau level of R increases with k2.
Therefore, as k2 increases, the enzyme copy number in the on
state becomes more time dependent, increasing the likeli-
hood of finding a peak.

The comparison between Figs. 6 and 7 suggests that the
relative magnitudes of the R-mediated switching rates in the
on-to-off and off-to-on directions, k3

on and k3
off, play a major

role in determining the parameter range over which Fon
SCE is

peaked. This observation is confirmed in Fig. 8, where the
boundary between peaked and unpeaked distributions is plot-
ted in the k3

on-k4 plane for various ratios r=k3
off /k3

on. The
larger the ratio r is, the smaller is the region in parameter
space where there is a peak. An intuitive explanation for this
might be that as r increases, the typical initial number of R
molecules in the on state increases, so that less time is
needed for the R level to reach a steady state, resulting in a
weaker time dependence of the on-to-off flipping rate and
less likelihood of a peak occurring in F�T�. If the presence of
a peak in Fon

SCE is indeed an important requirement for such a
switch in a biological context, then we would expect that a
low value of k3

off, as is in fact observed for the fim system,
would be advantageous.

V. CORRELATIONS

A peaked distribution of waiting times is by no means the
only potentially useful characteristic of this type of switch.
In this section, we investigate two other types of behaviors
that may have important biological consequences: correla-
tions between successive flips of a single switch, and corre-
lated flips of multiple switches in the same cell. We analyze
these phenomena using numerical methods. We present a
correlation measure which enables us to quantify the extent
of the correlation as a function of the parameter space. Our
main findings are that a single switch shows time correla-
tions which appear to decay exponentially, and that two

switches in the same cell can show correlated or anticorre-
lated flipping behavior depending on the values of k3

off and
k3

on.

A. Correlated flips for a single switch

Biological cells often experience sequences of environ-
mental changes: for example, as a bacterium passes through
the human digestive system, it will experience a series of
changes in acidity and temperature. It is easy to imagine that
evolution might select for gene regulatory networks with the
potential to “remember” sequences of events. The simple
model switch presented here can perform this task, in a very
primitive way, because it produces correlated sequences of
switch flips: the amount of R enzyme present at the start of a
particular period in state s depends on the recent history of
the system. In contrast, for bistable gene regulatory net-
works, or other bistable systems, successive flipping events
are uncorrelated, as long as the system has enough time to
relax to its steady state between flips.

In our recent work �35�, we demonstrated that successive
switch flips can be correlated for our model switch, and that
this correlation depends on the parameter k3

off: correlation
increases as k3

off increases. Here, we extend our study and
present a different measure of these correlations: the two-
time probability p�s , t ;s� , t�� that the switch is in position s at
time t and in position s� at time t�. In the steady state the
two-time probability depends only on the time difference �
= t− t�. In order to compare different simulations results, we
define the autocorrelation function

C��� =
pon-on���

pon
+

poff-off���
poff

− 1, �60�

where pon-on���=p�on, t ;on, t+��, poff-off���= p�off, t ;off , t+��
and pon �poff� is the probability of being in the on �off� state.
The correlation function �60� takes values between −1 and 1,
in such a way that it is positive for positive correlations, is
negative for negative correlations, and vanishes if the system
is uncorrelated. This function allows us to understand
whether, given that the switch is in a given position s
at time t, it will be in the same state s at a later time t+�.

Figure 9 shows simulation results for different values of
k3

on=k3
off=k3 and k4

on=k4
off=k4. As expected, the correlation

function vanishes in the limit of large �, meaning that in this
limit there are no correlations. Furthermore, we can see that
the strength of the correlations decreases when either k3 or k4
is increased. This is consistent with the previous remark that
in the limit of large switching rate �i.e., either k3 or k4�, the
distribution of enzyme numbers tends to a Poisson distribu-
tion. It is thus not surprising that in this same limit the cor-
relations vanish. In the insets of Fig. 9 we plot the same
correlation function on a semilogarithmic scale. The data for
the highest values of k3 or k4 �the dotted green curves� are
not shown since the decrease is too sharp, and does not allow
for a clear interpretation. For the smallest values of k3 and k4
�blue curves�, the decay seems to be exponential. However,
for intermediate values of k3 or k4 �dashed red curves� the
evidence for an exponential decay is less clear and the issue
deserves a more extensive numerical investigation. For the

0 20 40 60 80 100

kon
3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
k
4

r = 0
r = 10−3

r = 10−2

r = 10−1

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

FIG. 8. �Color online� Diagram showing the occurrence of a
peak when the ratio r=k3

off /k3
on is varied. Here k1=1 and k2=10. The

inset shows a zoom of the plot in the vicinity of k3
on=0.

VISCO, ALLEN, AND EVANS PHYSICAL REVIEW E 79, 031923 �2009�

031923-12



sake of completeness we also show in Fig. 10 similar data
for the case where k3

off=0. We find that qualitatively the data
have a very similar behavior to the case where k3

off=k3
on.

B. Multiple coupled switches

Many bacterial genomes contain multiple phase-varying
genetic switches, which may demonstrate correlated flipping.
For example, in uropathogenic E. coli, the fim and pap
switches, which control the production of different types of
fimbriae, have been shown to be coupled �42,43�. Although
these two switches operate by different mechanisms, it is
also likely that multiple copies of the same switch are often
present in a single cell. This may be a consequence of DNA
replication before cell division �in fast-growing E. coli cells,
division may proceed faster than DNA replication, resulting

in up to �8 copies per cell�. Randomly occurring gene du-
plication events, which are believed to be an important evo-
lutionary mechanism, might also result in multiple copies of
a given switch on the chromosome. It is therefore important
to understand how multiple copies of the same switch would
be likely to affect each other’s function �44�.

Let us suppose that there are two copies of our model
switch in the same cell. Each copy contributes to and is
influenced by a common pool of molecules of enzyme R.
Our model is still described by the set of reactions �1�, but
now the copy numbers of Son and Soff can vary between
0 and 2 �with the constraint that the total number of switches
is 2�.

To measure correlations between the states of the two
switches �denoted s1 and s2�, we define the two-switch joint
probability p2�s1 , t ;s2 , t�� as the probability that switch 1 is
in state s1 at time t and switch 2 is in state s2 at time t�. This
function is the natural extension of the previously defined
two-time probability for a single switch. Thus, in analogy to
Eq. �60�, we can define a two-time correlation function

C2��� =
p2�on,t;on,t + ��

pon
+

p2�off,t;off,t + ��
poff

− 1,

�61�

where pon �poff� is again the steady-state probability for a
single switch to be on �off�. If the two switches are com-
pletely uncorrelated, we expect that p2�on, t ;on, t��= pon

2 and
p2�off, t ;off , t��= poff

2 , so that C2���=0 �given that pon+ poff
=1�. In contrast, if the switches are completely correlated,
p2�on, t ;on, t��= pon, p2�off, t ;off , t��= poff, and C2���=1. For
completely anticorrelated switches, we expect that
p2�on, t ;on, t��= p2�off, t ;off , t��=0, and C2���=−1. In Fig.
11 we plot the function C2��� for two identical coupled
switches, for several parameter sets. Our results show that
for small values of k4, there is correlation between the two
switches, over a time period �10k1

−1, which is of the same
order as the typical time spent in the on state for these pa-
rameter values. Our results also show that the nature of these
correlations depends strongly on k3

off. In the case where k3
off

=k3
on �top panel of Fig. 11�, one can see that the correlation is

positive, meaning that the two switches are more likely to be
in the same state. In contrast, when k3

off is set to zero �bottom
panel of Fig. 11�, the correlation is negative, meaning that
the two switches are more likely to be in different states.

To understand these correlations, consider the extreme
situation where both the two switches are off, and the num-
ber of molecules of R has dropped to zero. In this case, the
only possible event is a k4-mediated switching which could
take place, for instance, for the first switch. Then, once the
first switch is on, it will start producing more enzyme, and, if
k3

off�0, this will enhance the probability for the second
switch to flip on too. This might explain why when k3

off

=k3
on we see a positive correlation between the two switches.

On the other hand, if we consider the opposite situation
where both the two switches are on, and the number of mol-
ecules of R is around its plateau value, then the on-to-off
switching probability for the two switches will be at its
maximum. However, after one of the switches has flipped

0 5 10 15
τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C

k3 = 10−4

k3 = 0.01
k3 = 1

0 10 20 30
10−3

10−2

10−1

100

0.0

0.2

0.4

0.6

0.8

1.0
C

k4 = 0.1
k4 = 1
k4 = 100

0 10 20
10−3

10−2

10−1

100

FIG. 9. �Color online� The two-time autocorrelation function
C��� for k1=1 and k2=100. The insets show the same data in a
semilogarithmic scale. Top: k4 is varied with constant k3=0.001.
Bottom: k3 is varied with constant k4=0.1.

0 5 10 15 20
τ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C

a1
a2
a3
b1
b2
b3

0 10 20
10−3

10−2

10−1

100

FIG. 10. �Color online� The correlation function C��� when
k3

off=0. As previously, k1=1 and k2=100. The data labeled as a
correspond to k3

on=0.001, while b corresponds to k3
on=0.01. For

each a and b the superscripts 1, 2, and 3 refer to the different values
of k4=0.1, 1, and 10, respectively. The inset shows the same plot on
a semilogarithmic scale.

STATISTICAL PHYSICS OF A MODEL BINARY GENETIC… PHYSICAL REVIEW E 79, 031923 �2009�

031923-13



�e.g., the first�, the switching probability will start decreas-
ing; this reduces the flipping rate for the second switch. This
suggests that k3

on may have the effect of inducing negative
correlations, while k3

off induces positive correlations. We also
point out the presence of a small peak in C2��� in Fig. 11
�indicated by the arrow� which suggests the presence of a
time delay: when one switch flips, the other tends to follow a
short time later. We leave the detailed properties of these
correlations and their parameter dependence to future work.

VI. SUMMARY AND OUTLOOK

In this paper we have made a detailed study of a generic
model of a binary genetic switch with linear feedback. The
model system was defined in Sec. II by the system of chemi-
cal reactions �1�. Linear feedback arises in this switch be-
cause the flipping enzyme R is produced only when the
switch is in the on state, and the rate of flipping to the off
state increases linearly with the amount of R. Thus, when the
switch is in the on state the system dynamics inexorably
leads to a flip to the off state. We have shown that this effect
can produce a peaked flip time distribution and a bimodal
probability distribution for the copy number of R. A mean-
field description does not reproduce this phenomenology and
so a stochastic analysis is required.

We have studied this model analytically, obtaining exact
solutions for the steady-state distribution of the number of R
molecules, as well as for the flip time distributions in the two
different measurement ensembles defined in Sec. IV, the
switch change ensemble and the steady-state ensemble. We
have shown how these ensembles are related and demon-
strated that the flip time distribution in the switch change

ensemble may exhibit a peak but the flip time distribution in
the steady-state ensemble can never do so. We also provide a
generic relationship between the flip time distributions
sampled in the two different ensembles. Given that in single-
cell experiments, measuring the flip time distribution in the
SCE is much more demanding than in the SSE, our result
provides a way to access the SCE flip time distribution by
making measurements only in the SSE. Our flip time calcu-
lations are reminiscent of persistence problems in nonequi-
librium statistical physics where, for example, one is inter-
ested in the time an Ising spin stays in one state before
flipping. However, because of the linear feedback of our
model switch, the flip time distribution is not expected to
have a long tail as in usual persistence problems. Rather it is
the shape of the peak of the distribution which is of interest.

By studying numerically the time correlations of a single
switch, using two-time autocorrelator �60�, we have shown
that our model switch can play the role of a primitive
“memory module.” The two-time autocorrelator displays
nontrivial behavior including rather slow decay, which would
be worthy of further study. We have also investigated the
behavior of two coupled switches within the same cell, and
showed that both positive and negative correlations could be
produced by choosing the parameters appropriately. In par-
ticular for k3

off=0, as is the case for the fim switch, anticorre-
lations were observed, implying that if one switch were on at
time t, the other would tend to be off at that time and for a
subsequent time of about one switch period.

Many open questions and problems remain. At a technical
level one would like to compute correlations of a single
switch analytically and be able to treat the multiple-switch
system. The model itself could be refined in several ways, for
example, by introducing nonlinear feedback �45,46�. It has
been shown that such feedback allows nontrivial behavior
even at the level of a piecewise deterministic Markov pro-
cess approximation �46�, where one assumes a deterministic
evolution for the enzyme concentration, but a stochastic de-
scription for the switching. At present our model includes no
explicit coupling to the environment, but such coupling
could be included in a simple way by adding into the model
environmental control of parameter k3 or k4. To make a
closer connection to real biological switches, such as fim, one
could extend the model to include, for example, multiple and
cooperative binding of the enzymes �26,27�. One particularly
exciting direction, which we plan to pursue in future work, is
to develop models for growing populations of switching
cells, in which cell growth is coupled to the switch state.
Such models could lead to a better understanding of the role
of phase variation in allowing cells to survive and proliferate
in fluctuating environments.
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APPENDIX A: SOLUTION FOR THE SURVIVAL
PROBABILITY

We show here how to solve Eq. �44� using the method
of characteristics �see, e.g., �41��. Introducing the variable
r�z , t�, we set

dh̃on„z�r�,t�r�…
dr

=
�t

�r

�

�t
h̃on�z,t� +

�z

�r

�

�z
h̃on�z,t�

=
�

�t
h̃on�z,t� + �k1�z − 1� + k3

onz�
�

�z
h̃on�z,t� .

�A1�

We can then identify the derivatives of t and z with respect to
r as

dt

dr
= 1,

dz

dr
= k1�z − 1� + k3

onz . �A2�

Next, we solve these equations for t�r� and z�r� using initial
conditions t�0�=0 and z�0�=z0:

t�r� = r, z�r� = k1�on + er/�on�z0 − k1�on� , �A3�

where �on= �k1+k3
on�−1. The reduced ordinary differential

equation �ODE� for h̃on is

dh̃on�r�
dr

= �k2�z�r� − 1� − k4
on�h̃on�r� . �A4�

Substituting in the above relation z�r� with its expression
given in Eq. �A3�, we get an ordinary differential equation

for h̃on�r�, which can be solved by separation of variables:

dh̃on

h̃on

= �on− k2k3
on −

k4
on

�on
+ er/�onk2� z0

�on
− k1��dr . �A5�

Solving the above equation using the initial condition

h̃on�r=0�=W̃�z0�, we arrive at

h̃on�r� = exp�− �onr + k1k2�on
2

− k2�on�er/�on�k1�on − z0� + z0��W̃�z0� , �A6�

where �on=k4
on+k2�1−k1�on�. Substituting then from Eq.

�A3� r→ t and z0→k1�on+e−t/�on�z−k1�on�, one finally recov-
ers Eq. �46�.

APPENDIX B: BACKWARD EVOLUTION EQUATIONS
FOR THE FLIP TIME DISTRIBUTION

In this appendix we show how result �55� can be obtained
by considering the backward survival probability

hs
−�n0,t� = hs�n,0�n0,− t� , �B1�

which is the probability that the system has survived in the
state s without flipping and with n enzymes at time 0 know-
ing that it had n0 enzyme molecules at a past time −t. The
probability hs

− will verify the backward master equation

�

�t
hs

−�n0,t� = n0k1hs
−�n0 − 1,t� + k2

shs
−�n0 + 1,t�

− �n0k1 + k2
s + n0k3

s + k4
s�hs

−�n0,t� . �B2�

In Sec. IV we used the forward master equation to com-
pute the flip time distribution in two steps. First, we com-
puted the forward survival probability hs�n , t� with two pos-
sible initial conditions, to distinguish the two possible
scenarios of measurement. Second, we summed this survival
probability over all possible final configurations, and took
the time derivative in order to enforce a flipping at the end of
the sampling.

An analogous calculation �which we do not detail� can be
carried out considering backward master equation �B2�, and
the final result has to be the same. In fact, we can consider
the right-hand side of Eq. �B2� as a generator of the back-
ward dynamics. Thus the solution of the backward evolution
equation will have as boundary condition the statistics of the
final configuration at time 0, and will yield the statistics of
the possible corresponding initial configurations at −t �with
the additional constraint that the switch never flipped�. Since
for both SCE and SSE we condition on switch flips at t=0,
the boundary condition of Eq. �B2� has to be taken when the
switch is flipping from state s to state 1−s, and thus corre-
sponds to

hs
−�n,0� = W1−s

SCE�n� , �B3�

where Ws
SCE is defined in Eq. �40�. This is the analog of the

first step described above. The advantage is that now our
boundary condition is the same for both the SCE and the
SSE.

We can relate hs
− to Fs by noting that 
n0

hs
−�n0 , t� is the

probability that the switch has not flipped going backward
for a time t. We now have to make a distinction between the
SCE and the SSE, since what happens at time −t is precisely
the initial ensemble. For the case of the SCE, we want the
switch to flip at time −t; therefore the flip time distribution is
given by

Fs
SCE�T� = − �T


n0

hs
−�n0,T� . �B4�

On the other hand, for the case of the SSE, there is no flip-
ping at −t to enforce and the flip time distribution Fs

SSE is
simply proportional to the survival probability:

Fs
SSE�T� =



n0

hs
−�n0,T�

�
0

�

dT�

n0

hs
−�n0,T��

. �B5�

The denominator in Eq. �B5� is chosen to ensure normaliza-
tion �dTFs

SSE�T�=1.
Furthermore, we can compute the average flip time in the

SCE using Eq. �B4�,
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�T�s
SCE = �

0

�

dT�T�FSCE�T�� = �
0

�

dT�

n0

hs
−�n0,T�� ,

�B6�

where an integration by parts has been performed. We can
see then that the denominator in Eq. �B5� is exactly the av-
erage flip time. Finally, integrating Eq. �B4� from T to infin-
ity and replacing the result in Eq. �B6�, we obtain

Fs
SSE�T� =

�
T

�

Fs
SCE�T��dT�

�
0

�

T�Fs
SCE�T��dT�

, �B7�

and result �55� is recovered.
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